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Bounded generalized absolutely monotone functions which are not equal to
their Taylor-type series are considered. This family of functions constitutes a
convex cone in a generalized C~(a, b) space. The question of extreme rays of this
cone as well as the extreme ray representation of its elements is discussed. 1994
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1. INTRODUCTION

We start by recalling some definitions and results to be used in the
sequel. Let {u;l7~o be an infinite sequence of functions belonging to
C'[a,b], such that for all n, n = 0,1,2, ... , {u;li~o forms an Extended
Tchebycheff System on [a, b]. With no loss of generality we may assume
that

where

u;(t) = 4>;(t;a),

{
0,

4>o(t; x) = wo(t),

i = 0, 1,2, ... ,

a5,t<x,
x5,t5,b,

(1.1 )

( 1.2)

a5,t<x,

x5,t5,b, ( 1.3)

i=I,2,3, ... ,

and where {w;l~~o is a sequence of positive CX[a, b] functions.

1.1. DEFINITION. A function f defined on (a, b) is said to be convex
with respect to the Tchebycheff system (u)i'~() if for every set of n + 2
points, a < to < t I < .. , < tn + l < b, the following determinantal
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inequality holds:

uo( to) uo( t I) uo(t,,) UO(t,,+I)

( UO,ut, ... ,u",f)
ul(to) ul(td UI( t,,) UI(t,,+I)

U to,tl, ... ,tn,tn+l =
~ O.

un(to) un(t 1) Un( t,,) U,,(tn+l)

f(tn) f(tl) f( tn ) f(t,,+I)

The set of convex functions with respect to the Tchebycheff system
{uJt~o forms a convex cone denoted by C(uo, up ... , u,,) or C" in case no
ambiguity arises. Also, we let C _ I denote the cone of nonnegative func­
tions on (a, b). Note that cPk(-; x), for k ~ n, is in Cn (see [2, Cora. 32,
p. 395]).

It is shown in [2] that f E CA = n ~ ~ -IC" if and only if

(L_tf)(t) =f(t) ~ 0

and

a < t < b, n = 0, 1,2, ...

where (Dd){t) = (d/dtXf(t)/w/t».
The elements of the cone CA are called generalized absolutely mono­

tone (GAM) functions.
Also, if f E CA then the following Taylor-type formulae hold (see

[2, Remark 3.1, p. 395]):

b n (Lj-dHa+)
f(t) = f cPn(t; x)(Lnf)(x) d.x + L ) uj(t), (1.4)

a i=O wj ( a

a s t < b, n = 0,1,2, ....

Formulae (1.4) give extreme ray representations for the elements of
n7~_LC[,

As shown in [1], a necessary and sufficient condition for all functions
f E CA to admit the Taylor-type representation

where

f(t) = Eajui(t),
i~O

( 1.5)

a· =[

(Lj_dHa+ )

wi ( a)
i = 0,1,2, ... ,
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is that for every t, a < t < b, there exists a number s, t < s < b, such that

limui(t)/ui(s) = O.
i ---.+00

( 1.6)

Moreover if we restrict ourselves to the cone B n CA , where B denotes
the set of bounded functions on (a, b) then (1.6) could be replaced by

limui(t)/ui(b) = O.
i --+ 00

(1.6' )

Formula 0.5) is an extreme ray representation for f E CA' In this paper
we generalize the representation 0.5) for B n CA-functions in case (1.6')
does not hold.

We conclude this section with:

1.2. LEMMA. Let m > n > 0 and a ~ y ~ x < b be fixed. The equation
(in t)

( 1.7)

has at most one root in the interval (y, b). Moreover, if it has a root in this
interval, then the left-hand side of 0.7) changes sign at this root.

Proof Assume to the contrary that (1.7) has more than one root. Let
t J < t2 be two roots of 0.7) in (y, b). Clearly, t l and t2 belong to (x, b).

Define

Assume first that n = 1,

fl ( x, b) E C(U 0 I[ x, b ], u [I [ x , b]), ( 1.8)

where gil denotes the restriction of g to the set l. Since f vanishes at the
points t p t 2 and b, f agrees with a "polynomial" aouo + a1u j on [t p b]
(see [4, Lemma 1]). This is impossible by the definition of ¢m('; x) and
since m > 1.

Suppose f has a single zero, to' in (y, b) and that f does not change
sign at this point. If y < x then f( x) > 0, and, since f doesn't change
sign, it is strictly positive in (to, b). In this case,

(1.9)

for all t E (to, b), in contradiction to 0.8). If y = x then, since
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(4>i(t; y)/ 4>,(b; y )}~~ 0 is a nonincreasing sequence for all fixed t and y (see
[1, Lemma]), f:$; 0. It follows that

( 1.10)

for every t j E (x, to) and t 2 E (to, b). Inequality 0.10) contradicts 0.8).
Let n > 1. Since f( y) = 0, f has at least four zeros in [y, b]. Hence

Lof has at least three zeros in the interval (y, b) (actually in (x, b». The
claim follows by induction since f( y) = Lof( y) = L I f( y) = ... =
L

Il
- 2 f(y) = 0, and at each stage Ld has at least three zeros in (x, b).
The proof that f cannot vanish at a single point of (y, b), without

changing sign at that point, follows in the same lines. I

In what follows we assume, for the sake of simplicity, that W o = I
(which implies that the elements of Co are nondecreasing in (a, bn.

2. THE CONE OF SINGULAR GAM FUNCTIONS

2.1. DEFINITION. A function f which (i) belongs to CA (or B n CA )

and (jj) satisfies «L;/)/wi+1Xa+) = °for i = -1,0,1, ... , is called a
singular generalized absolutely monotone (SGAM) function.

2.2. COROLLARY. Assuming that 0.6) (resp. 0.6'» holds, then the only
singular function in CA (resp. B n CA ) is the zero function.

In [7], Ziegler raises the question of the extreme ray structure of CAin
case 0.6) does not hold. In [3], we gave an example of an infinite sequence
defined by (1.1)-0.3) for which (1.6') does not hold. In this note we
discuss the extreme ray structure of the cone B n CA in case that 0.6')
does not necessarily hold, and find an extreme ray representation for its
elements when certain conditions are satisfied.

Since every GAM function has a unique representation

where

f
- ;., (L,_d)(a+))

I - 1..J u,
i=O wi(a)

(2.1 )

(2.2)

and fo an SGAM function, it is sufficient to discuss the extreme ray
representation of SGAM functions.
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The set of the SGAM functions is a convex cone with vertex at the
origin. This cone will be denoted by S. The cone S, as well as CA'

are subsets of the generalized C"'(a, b) space V, i.e., the linear space of the
functions for which the differential operators L i , i = -1,0,1, ... are
defined, with the topology determined by the family of seminorms,

IlfliZ = sup{!LJ(t)llt Elk, p S n}, ( 2.3)

where Ik = [a + (I/k),b - (I/k)], k > 2/(b - a) and n = -1,0,1, ....
With this topology, V is a complete metrizable locally convex space.
Moreover, it is also a Montel space, i.e., every bounded set is relatively
compact (see [1]). In particular, the set {f E CA Ilim r ~ h f(t} S l} is closed
and bounded, hence compact [1].

2.3. LEMMA. The limit ¢(t; x) = lim,,~x ¢/t; x)j¢,,(b; x) exists for
eeery t E [a, b] and x E [a, b). Moreoeer, it has the following properties:
(j) for every x, 4>x = ¢( . ; x) E S, (ij) for every t, ¢' = ¢(t; . ) is nonincreas­
ing, and (iii) ¢' is left-continuous.

Proof The functions ¢,,([; . )/¢,,(b; . ), n = 0, 1,2, ... , are continu­
ous and nonnegative. Moreover, they are nonincreasing [2, Lemma 9.2,
p. 437]. This, together with the fact that {¢,,(t; x)/¢/b; x)}~~() is a
non increasing sequence for every fixed t and x (see [1, Lemma]), implies
the existence of the limit as well as (ii) and (iii).

Since (¢,,(';x)/4>,,(b;X»ECm for all n2.m and Os(4),,(';x)/
cb,,(b; x» s 1 and since Cm is closed under pointwise convergence, it
follows that ¢x E B n CA' Since for x > a and for all n, cb,,('; x) vanishes
on [a, x], so does cbx ' This implies that ¢ x is singular. For the case x = a,
see [1]. I

For t E [a,b] and x E [a,b), define !/J,,(t;x) = (cb,,(t; x)/¢,,(b; x».
Since !/J,,(r; . ) is nonincreasing and bounded one can define !/J,,(t; b) =

limx~h !/J/t; x). Applying L'Hospital's rule one sees that !/J,,(t; b) = 0 for
a s t < b and hence lim, ~h !/J,,(r; b) = 0, however, !/J,,(b; b) = 1. The
functions !/J,,(t; . ) are continuous on [a, b].

2.4. COROLLARY. For every t E (a, b), the closed set supp(cb(t; . » is
either empty (in case that (I.6') holds, these sets are empty for all t) or a
closed interval [a, a,], for some a, 2. a.

2.5. LEMMA. Let f be a bounded SCAM function. Then

f(t) = fh!/J,,(t; x) da,,(x),
a

(2.4)
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a,,(x) = [4>"(b;tHL,,f)(t) £It·
a

(2.5)

Proof The proof follows from (1.4) and the fact that I IS singular.
Moreover, a" is continuous and nondecreasing on [a, b]. I

We use the following notation: Let {x)~~ I be a sequence and let
M = {n)i- I be a subsequence of integers. Then M - lim x" denotes

lim J _. x x""

2.6. LEMMA. Let IE S and let the filllctions a" be defined by (2.5).
Then there exists a function a and a sequence M(a) = (n)i~ I such that

a(x) = M(a) - lim a,,(x)

exists for el'ery' x.

Proof For every n, allis a positive nondecreasing function and a)x)
is bounded by I(b - ). The claim follows by Theorem 16,2 of [6, p. 27].

I
2.7. DEFINITION. Let the function a be nondecreasing (nonincreasing)

in I = [a, b]. A point x E I is a point of invariability of a if a is constant
in some neighborhood of x. All the other points are called points of
increase (resp. decrease) (sec [6, p. 6]).

2.8. DEFINITION. Let I be an clement of a cone C whose vertex is at
the origin. We say that I generates an cxtrcme ray in C if p = {r/lr ~ OJ
is an extreme subset of C. In this case p is called an extreme ray of C.

2.9. THEOREM. Let I be a nonzero SCAM fimction and let a" and a be
defined as in Lemmas 2.5 and 2.6. If a has more than one point 01 increase
then f does not generate an extreme ray of S.

Proof Since f is not identically equal to zero, wc may assume that
feb - ) = 1. Since 1jJ,,(b; x) = 1 for every x, (2.4) implies that aJ[a, b])
and a([a, b]) are both equal to I, where a,,(J) = I} £10'" and a,,(]) =

[} da" for every measurable set J. Define the set

A = {xl4>(t; x) > 0, for some t E (a,b)} = {xl4>(b - ;x) > O},

and let s = sup A. Clearly, a ::;; s ::;; b. Note that A is an interval ([a, s) or
[a, s]), since for each t, 4>(1; x) is a nonincreasing function of x. First we
show that a does not havc points of increase in (s. b]. If s = b thcn there
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is nothing to prove. Assume that a s; s < b. For every t E [a, b),

205

f h fSI fhf(t) = I/I,,(t;x)da,,(x) = I/I,,(t;x)da,,(x) + I/I,,(t;x)da,,(x),
a lJ Xl

for all SI' S < SI < b. Since for x > s, lim" ~x I/Ijt; x) = 0, and for every
1/ the function 1/1,,(1; x) decreases in x, then for every E > 0 there exists
1/(E) such that for all 1/ > 1/(£),

f(t) S; {'I/I,,(t; x) da,,(x) + E.
a

(2.6)

Letting t ~ b - , we have, 1 = f(b - ) S; a,,([a, s,]) + £. Letting 1/ ~ 00,

we get 1 S; a([a, sd) + E. Since this holds for all E and all s" S < s, < b,
we have a([a, s]) = 1. If s is not in A then 1/1,,(1, x) = 0 for all x z s. This,
together with the monotonicity and the continuity of 1/1,,(1, x) in x, implies
that (2.6) holds with some SI = Sl(e), a < s, < S and for all large 1/.
Similar argument leads to the conclusion that a([a, s» = 1. In any case,
a(A) = 1. In particular, a does not have points of increase in (s, b].
Moreover, if S is not in A and is a point of increase of a then every
neighborhood of S contains infinitely many points of increase of a.

Suppose a has at least two points of increase. Let c lie between two
points of increase. Set

_(a,,(x), as;xs;c,
(3,,(x)- a,,(c), c<xs;b,

{
D' as;xs;c,

y,,(x) = a,,(x) - a,,(c), c <x S; b.

Now define the functions g" and h" by

g,,(t) = tl/l,,(t;x) df3,,(x),
a

and

h,,( t) = t 1/1,,( t; x) dy,,( x).
a
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h n <5.f(b-).

As in Lemma 2.6, there exist two subsequences M(g) and M(h) such
that

M(g) = -lim gn(t) = get)

and

M(h) - lim hn(t) = h(t).

We may assume that M(a) = M(g) = M(h). Clearly g, h E Sand f =

g + h. It is readily seen that h = 0 on [a, c] while f, hence g, does not
vanish on this interval. Also, since for some t E (a, b), c/JCt; . ) is positive
in an interval entirely to the right of c and containing a point of increase
of a, h *- 0 on (a, b). Thus g and h do not belong to the same ray of S, so
f does not generate an extreme ray of S. I

In what follows we study the structure of c/J(t; x) and give a representa­
tion of f by means of a certain set containing {c/Jxla <5. x < b}. Assume
first that c/Jt is continuous for some t. In this case, Dini's Theorem implies
that the convergence of 1/JnCt; x) to (V(x) is uniform in x. Letting n go to
infinity, (2.4) implies

f(t) = t4/(x)da(x) = tc/JxCt)da(x).
a a

We now discuss the discontinuities of the functions {c/Jt}. If for some t,
c/Jt(x) *- 4/(x + ) = limy~x+ 4/(Y) then ePx *- ePx+' where ePx+ is defined
by c/Jx+(s) = c/JS(x + ), a :$ S :$ b. We show that the discontinuities of
eP(t;x) occur along segments.

2.10. LEMMA. Let c/J)r) *- ePx+(r) for some t. If s < t and c/J)s) > 0
then eP)s) *- c/Jx+(s).

Proof For every t, set x t
= {xleP)r) *- ePx+(r)}. We show that if

x E XI for some t then x E X S for every s < t as long as ePx(s) > O. By
[2, Lemma 9.2, p. 437], we have

for Sl < S2 and x < y.

l
ePn(S\;X)

c/Jn(SI; y)
(2.7)
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Dividing the rows 0[(2.7) by c/Jn(b; x) and c/J/b; y), respectively, we can
write it in the form

I
t/Jn(5 1;X)

t/J,,( SI; y)
(2.8)

for SI < 52 and x < y.
Letting n go to infinity, (2.8) implies that

[
c/J(SI;X)

c/J( S 1; y)

<I>(S2;y)

<1>(5 2 ; x)

so c/J,'/c/Jx is nondecreasing. Letting y ~ x + one concludes that t/Jx =

c/Jx+/c/Jx is nondecreasing. Also, t/J)t) ~ 1 and equality holds iff <1>1 is
continuous at x. Consequently, if cPt has a discontinuity at x, then so does
c/J' for all s < t as long as cP'(x) = c/J)s) = c/J(s; x) *- O. I

2.11. COROLLARY. The set X = {xlc/Jx *- c/Jx+} is countable.

Proof For every t, c/JI has at most a countable number of points of
discontinuity, i.e., XI = {xlc/Jl(x) *- <l>1(X + )} is countable. It follows from
Lemma 2.10 that X = U{Xlla ~ t < b} = U{X'la :::; r < b, r is rational,
or r = a}, hence the set X is countable. I

We now discuss the elements of the cone S for which the measure a has
exactly one point of increase. In particular, we study the extreme ray
structure of S.

Let {t""}~~1 be a sequence of numbers in the interval [a,b]. Since both
{t"n}~~ I and {t/J"(.; t"n)}~ ~ 1 are bounded, there exists a subsequence of
integers, {n)j~ I for which {t"" Jj~ 1 and {t/J" ( .; ~,,)}j~ I converge. Note that
the convergence is in the topology defined by (2.3). In particular it is
uniform on every closed subinterval of [a, b). Letting ~ = ({~n }j~" (n)j~ I)'
define - }

lim ~ = lim t"" ,
- j-----+x j

and call I(f) = {n)j~ I the index set of f Define

(2.9)

(2.10)
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For the sake of simplicity we write ~ - lim tjJ,,( .; ~f,) for /(0­
lim fjJ,,('; ~,,).

When I(~) = {n In ;;:0: nil} we write ~ = {~X~"". Clearly, cP~ belongs to
5 n B. Let lim ~ = x. If ~" .s: x for infinitely many values of fl, n E 1(0,
then cP, ;;:0: cPt ;;:0:- cPx for every y, y < x. Letting y ~ x, the left continuIty
of cP, (In y) implies that cPt = cP.,. Note that if cPt is continuous at x, and
lim ~ = x, then cPt<O = cPU; x) = cPx'

Let ~ and TJ be two such sequences with limits x and y, respectively.
We say that [.s: TJ if cP~ ;;:0: cPl]' When cPt. = cPl] we say that ~ and TJ are
equivalent and write ~ .:. TJ. We say that ~ <-TJ if ~ .s: TJ an-d ~ "" ry. In
particular, when ~ and- TJ have the same index set I, and [" .s: 1],,-holds for
infinitely many values of n E I then ~ .s: 1].

We now show that the set := of all sequences ~, defined above, is totally
o~ered. -

2.12. LEMMA. Let ~ E :2 and let cPt be defined by (2.10). There exists a
sequence f = {~;)~~ I stich that for el'ery t E [a, b),

cPt(t) = lim fjJ,.(t;g;,).
-=- n -Jo,-:x;,

Proof For every n E 1(0 set ~;, = ~II' Let n j , n j +! E I(g) and assume
that n j + I < n j + I' We now define ~;, for n j < n < n j + I' -

Case A: ~" .s:~" . Set ~;, = ~" for every nJ < n < nJ + I' Since
) j + I J + I

fjJ,,( t; x) is a nonincreasing function of n and x,

(2.11)

Case B: g" < ~". Since for all x and t, {fjJ/t; X)}~~II IS a non in-
]+ I J

creasing sequence, it follows that

(2.12)

and

(2.13)

for all n j < n < n j + I' By Lemma 1.2, strict inequality holds in (2.12) and
(2.13) in (~'" b) and (~" ,b), respectively.

J J + I

Recall from Lemma 1.2 that fjJ" (.; g" ) - tjJ" ( .; ~" ) has at most one
, + I J + 1 , -'

root in (~" ,b). Assume first that the equation
I

(2.14)
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has one root in (t" , b) and denote it by to' By a continuity argument, one
I •

can show that there eXists t:" t" < t:, < t" such that
J + I J

In particular, this follows from (2.12) and (2.13). Moreover, it follows from
Lemma 1.2 that the functions l/J" ( .; g" ) - l/J"('; g,,), l/J,,('; t" )-

J J ! J+ I

l/J" (·;t" ) and l/J,,(·;t,,) -l/J". (.;g" ) have a sign change at to' This
I + I J+ I J J J + I J + I

implies that for every t E [a, b],

l/J,,(t;t~)liesbetween l/J".(t;t")andl/J,, (t;t" ).
J I j + I j + I

In case that (2.14) has no roots in (g" ,b), the inequalities
I

(2.15)

hold for every n j < n < n j + l • We claim that for some g E [t"J+I,g,,) we
have l/J,,(-;t,,)::; l/J,,{·;t)::; l/J" (-;g" ). Set

J I J + I J"- I

A = {gig" < t < g", 3t = tU), in (g" ,b),
1+1 J ]+1

such that l/J,,(t;O > l/J"I.,(t;t"J+I)}

and

B = {tit" < t < t" ,3t = tU), in (1;" ,b),
I +I) - J

such that l/J,,( t; 0 < l/J"J( t; g"J}.
The continuity of l/J,,(r; . ) implies that both A and B are open. Moreover,
this continuity together with (2.12) and (2.13) imply that all t E (g" '

J + I

g" + e) belong to A, and all t E (g" - E, g,,) belong to B, for some
J+ I J J

positive E, i.e., both A and B are not empty. Next we show that A and B
are disjoint. Assume they are not. For tEA n B there exist two points
tl,t o E (g" ,b) such that l/J,,(r,; g) < l/J,,(rl; g,,) and l/J,,(r2; t) >

.. J+ I j J

l/J" (r2;g" ). If t l > t 2 then the equation
J+I J+ I

has at least two roots in (g" ,b), and if t l < t 2 , then the equation
J+J

has two roots in (g" , b), in contradiction to Lemma 1.2.
J
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Since the interval (gn ' gil ) is a connected set, it cannot be the union of
J + I J

A and B, i.e., for every n
J

< n < n
J

+ 1 there exists g;, E (gil ' gn ) \ (A U
J + I J

B). For such g;"

( 2.16)

m = 1,2,3, ... ,

Since for every t E [a, b], limj~"" l/Jn(t; gn) = 4>~(t) and since for every
t E [a, b] and all n j < n < n j + I' l/Jn<t; g;,) is b~etween l/Jn(t; gn) and
l/Jn (t; gn ), (see (2.11), (2.15) and (2.16», it follows that J J

J-+ I 1+1

4>~(t) = lim l/J1I(t;g~) for every t E[a,b) .
.:.. n---OJOC

Moreover, the convergence is uniform on every closed subinterval of
[a, b). •

2.13. COROLLARY. (a) For el'ery g, 7] E 2, one of the following holds:
(i) g < 7], (jj) g > 7], or (iii) g - 7]. (b) If 4>/t) > 4>.,,(t) for some t, then
g <-7]. - - - - - ~ -

Proof Let f and 7]/ be defined as in Lemma 2.12. If for almost all n,
g~ < 7]~ (g;, > 17~) then, since for all n l/JII(t; x) is nonincreasing in x, we
get 4>~ ~ 4>71 (4)~ :$; 4>71)' If this is not the case, then both relations, g;, :$; 7]~

and ~~ ~ r];, hold infinitely many times from which one deduces that
4>~ = 4>71' This concludes the proof of part (a). Part (b) follows from part

(a). .-

2.14. LEMMA. The set {4>~lg E 2} is compact in the topology defined by
the family of seminorms (2.3). -Moreol'er, if lim", .~x 4>~m exists, then there
exists g with lim g = lim j ~ x lim gm. for some subsequence of integers {m)j~ 1

and lim", ~x 4>~/: = 4>r - ,

Proof It is sufficient to show that {4>~lg E 2} is sequentially compact.
Let {4>tJ~, ~ 1 be a sequence of functions WIth ~m E 2. By (2.9) and (2.10),
there exist sequences

71<m) = ({7]~~;")}Jx~I' (nj(m)CI)'

. h I' (m) - h h I' .1, (.. (m) ) - A-Wit Imj~"" 7]n
J
(m) - xm suc t at Imj~"" 'l'1I/m) ,7],,/(m) - 'I'~m'

We may assume (taking subsequence if necessary) that lim m -:"x x m = xu'
Let m l > 2/(b - a) be an integer such that IX

ml
- xul < 1/2 and let

n(m,) E I(7]m) be such that
- I



ABSOLUTELY MONOTONE FUNCTIONS 211

Suppose m l , m 2 , ••• , m j _ 1 had been chosen. Choose m j > m j - l such
that Ix m} - xol < 1/2 j and let n(m) E I(?lm) be such that

(i» 17"]~(':;,j) - xm,1 < 1/2
j

and (ii» Illfrn(m/)('; 7"]~~,;/}») - cf>~mJ:: < 1/21
•

Clearly, limj~oc 7"]~n,;/) = xn. Let lim j --+ oc lfrn(m r; 7"]~D~\) = cf>( (taking
subsequence if necessafy.) } I "

We now show that lim j --+ x cf>( = cf>e Given E > 0 and two integers n, k
~mj .::.

there exists in with m jll > max(n, k) such that for all i > io

and

Thus for i > io, 11cf>~m - cf>~llk < E, Le., lim j --+ oc cP~m = cP~.

In particular, since for all x E [a, b) cP,x belongs to {Ci>~I{ E E} so does
cf>x+' I - -

2.15. LEMMA. Let {, 7"] E E. If cP/t} = cPT/(t) for some t E [a, b), then
either cP~(t) = cP.,}t} = -0 or cP~(s) = ib..}s) for all s ~ t.

Proof By Corollary 2.13 we may assume that { < 7"]. Obviously cf>~ ~

cPT/' Assume that cP/t) * O. Inequality (2.8), together with Lemma 2~12,
implies -

(2.17)

for t < s.
Since cP/t} = cPT/(t} > 0 one concludes that cf>/s) ~ cPT/(s). This implies

that equality holds-for all s ~ t. I --

We now show that this family has a mean value property, in particular,
the gap between cPx and cP x+ is filled.

2.16. PROPOSITION. Let { < 7"] be two sequences with limits X o and Yo,
respectively. If for some tEla, b)

(2.18)

then there exists a sequence f, ~ < f < ?l such that cP/t} = r.
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Proof By Lemma 2.12 we may extend the sequences g and TJ to {g;}~~o

and (TJ;}~~o respectively. Assume first that X o > a an-d Yo <: b. Since
g < TJ, we have X o ~ Yo' Let x < X o and y > Yo' There exists no such that
for ali k > no, g~ > x and TJ~ < y.

Let E = (l/2)min( cPf{t) - r, r - cPry{t». There exists n(d> no such
that - -

k ~ n(E), (2.19)

and

k ~ n(E). (2.20)

The first inequality in each of the formulae (2.19) and (2.20) follows
from the monotonicity of I/J,,(t; . ), the second from the definitions of cPt
and cPry' and the third from the definition of E. C

Let n > ned. For k > n,

Also,

I/Jnf t; y) ~ I/J,,(,)( t; y) < r.

(2.21 )

( 2.22)

The first inequality in each of the formulae (2.21) and (2.22) follows
from the monotonicity of sequences I/J,,{t; x), and I/J,,( t; y), the second
from (2.19) and (2.20).

Thus we conclude that

n>n(E).

This together with the continuity of I/J"Ct, . ) imply that there exists {",
x < {" < y such that I/J,.(t, {,) = r, i.e., there exists a sequence { with
lim { = Zo (taking a subsequence of {{,,}~~ I if necessary) such that cP(
exists and cP/t> = r. Corollary 2.13 implies that g < { < TJ. -

If x() = a or Yo = b, the proof is valid with x ~ x()-and-y = Yo' respec­
tively. I

2.17. LEMMA. Let f be a bounded SGAM function and let a" and a be
defined as in Lemmas 2.5 and 2.6. If X o is the only point of increase of a
then f /f(b -) is in the closed conl'ex hull of the functions cPf with
lim g = X(). In particular, if cPt is continuous at X o for every t then
t It(b - ) = cPxo'

Proof The function f is not identically zero and we may assume that
feb - ) = 1. Thus, a,.([a, b)) = 1 for all n.
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For every n, m = 1,2,3, ... Let

a = x;;'.o < x;;'. I < .. , < x;;'.m = b

213

(2.23)

be such that anU::',k) = l/m, with I::'.k denoting the interval
[x;;'.k' X;;',k+I)' k = 0,1" .. , m - 1. Since by Lemma 2.5, t(O =

f:!/Jn{t; x) da/x), n = 0,1,2, ... , one has

m m-I

L (l/m)«/Jn(t;x;;'.d ::;f(t)::; E (l/m)!/Jn(t;x;;'.d· (2.24)
k=1 k~O

Letting n go to infinity (taking subsequences if necessary), one gets

(2.25)

where

m

Am(t) = L (l/mHx (t)
_m,k.

k=\

m-l

Bm(t) = E (l/m)<p x (t)
_m,k

k~O

(2.26)

with ~m,k = ({X;;;~k,k)}j=I,{n/m,k)}j=I)' k = O,l,oo.,m, m = 1,2,3, ...
defined by (2.23). Since for every m there is a finite number of sequences
we may assume that n/m, k) = n/m), k = 1,2, ... , m, j = 1,2,3, ... ,
namely,

k = O,l, ... ,m, m = 1,2,3, ...

(2.27)

From (2.25) and (2.26), it follows that

(2.28)

f! and 12 being the constant sequences {a, a, a, .. . }, and {b, b, b, .. . },
respectively.

Since for every closed interval I c [a, b), an(I) tends to °if X o $. I, we
have

640/79/2-4

(

xo,
lim ~m.k = a,

b,

0< k < m,

k = 0,
k = m.

(2.29)
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Now, (2.25) and (2.28) imply that lim m---+>:{(1/2)(Am(t) + Bm(t)} =
f(t), i.e.,

, ~i~ {Ell (1/m)4>!mjt) + (1/2m)(4>~(t) + 4>q(t))} =f(t).

From here we conclude that

and hence

(2.30)

The convergence is uniform on every closed subinterval of [a, b). Since
{fE CAllimt---+bJ(t):o:; l} is a compact set in the generalized C"(a,b)
topology, a subsequence of O::;;'~/(l/(m - l))4>x }converges to f in this

_m.k

topology, i.e., f is in the closed convex hull of the set

In the case that 4>' is continuous at X o for all t, 4>, = 4>x , whence f = 4>x .
~ II 0- I

2.18. LEMMA. Let 4>x k = 1,2, ... , m - 1, m = 1,2,... be as in
Lemma 2.17, and let f ~mM - lim{L;;'~i(l/(m - 1))4>x 1 for some se-

-m.k

quence of integers M. Iff is not a positive multiple of any 4>T/' then f does not
generate an extreme ray in S. -

Proof For every m E M set

m-l

fm = E (1/(m - 1))4>x ._m,kk=l
It follows from (2.23) and (2.27) that

(2.31)

... ~ 4>x .
_m,m

(2.32)

Also, each of these functions is nonnegative and bounded by 1.
We may assume that f is not identically zero, i.e., there exists to E (a, b)

such that fU o) = p > O. There exists m o = moUo) such that fmUo) >
(3/4)p for all m > m o, m EM. We may assume that mo > 1 + 4/p.
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Since each of the summands in (2.31) is nonnegative and bounded by
1/(m - n, there exists m' = m'(m) such that

m'

Define gm = L:r~ IO/(m - l))<P'm,'
Setting h m = fm - gm' it follows that h",<to) ~ p/4.
Let 7J..m E E be such that

<P ~<P ~<P .
lm,m' 1J..m !m."I+/

Applying (2.17) and the inequalities (2.32) and (2.33), one gets

(2.33)

<p,m)t)

cP'm)s)

for all k = 1,2, ... , m', and all t < s. From the linearity of the determi­
nant in the first column it follows that

gm(t ) cP'lm(t)

gm( s) <P'lJ s)
~O

for all t < s.
Similarly,

cP'lm(t) hm(t)

cP'lm( s) hm( s)
~O

(2.34)

(2.35)

for all t < s.
Letting m ~ 00 (taking subsequences if necessary) and applying Lemma

2.14, one sees that the functions gm' h", and cP'1m converge, in the topology
defined by (2.3), to g, h, and cPl)' respectively. -The inequalities (2.34) and
(2.35) imply -

g( t) cP'l( t)

g(s) cP'l( s)
~O

and

cP'l( t) h( t)

<P'l(s) h(s)
~O

for all t < s.

(2.36)

(2.37)
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f=g+h ( 2.38)

m

I:

and g and h "* O. Next we show that cP'1 "* O.
It follows from (2.32) and (2.33) that for every m,

In

cP'l'" > cP'''''''+1 Z I: (l/(m - m'»cP''''k
k~In'+ 1

(l/(m - l»cP''''k = hI»'
k~m'+l

Letting m go to 00, one concludes that cP'1(ro) z hUo) z p/4 > O.
We now show that g and h do not belo-ng to the same ray of S. Assume

to the contrary that they do belong to the same ray. In this case equality
holds in both (2.36) and (2.37) for all t and s, t < s. This implies that both
g and h are positive multiples of cP'1' From (2.38) it foHows that f is a
positive multiple of cP'1' in contradiction to the assumptions of the lemma.

- I

3. THE EXTREME RAY REPRESENTATION

We now state conditions under which every cP~, not identically zero,
generates an extreme ray of S. -

3.1. DEFINITION. Let ~ and cP§ be as above and let

We say that the function cP§' not identicaIly equal to zero, has property (*)
if for every 11 E E, 11 < g -

We say that the family {cP§l~ E E, cP§(b - ) "* O} has property (*) if
each of its elements has property (*). -

Letting [~] = {11 111 - ~} denote the equivalence class of the sequence ~
we put - - - - -

(3.1 )
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3.2. THEOREM. Let the cone S and the family {<p[~ll~ E E, <p/b - ) *"
O} be defined as above. All extreme rays are generated by elements of this
family. If ¢J{o has property (*) then ¢J[{oJ generates an extreme ray ofS n B.

Proof The first claim follows from Lemmas 2.17 and 2.18. Let So =

(flf E S, feb - ) = 1} and let <p[{;oj E (<p[{;JI~ E E, <p[db - ) *" OJ. Since
So is compact and convex, and the family {Ip[~ll~ E-E, <p[nCb -) *" O},
where Ip[~l = ¢J[~l<p[{;)(b - ), contains all its extreme points, the well
known theorem of Choquet (see, e.g., [5]) implies that every f E So admits
a representation Un = fLdA f for every continuous linear functional L,
where Af is supported by the set of extreme points of So' Since the set
{Ip[nl~ E E, <PI,,/b - ) *" O}, contains all extreme points of So, and since
the-re is a one-fo-one correspondence, T: [~] ~ Ip[{;l' between this set and
the set {[~]I~ E E, <Pldb - ) *" O}, we have -

where IIf = Af 0 T- 1
. For the" point evaluation" functionals we have the

following representation:

In particular,

for every t E [ a , b) .

for every t E [ a, b)

(3.2)

Letting t ~ t t + , property (*) implies that the integrand of the first
integral tends to infinity, hence the measure v", must vanish on the set

I'oi
{[.f]It' < t'.} i.e., II", is supported by the set {[.fJI.f ~ .f]}. Since this holds

- - - ('01 - - -
for every .f1 with -t'l < .fo, it follows that II", is supported by the set

- - - 1'0]
{[~]I.f ~ t'o}. It follows from (2.17) Oetting s ~-b - ) that

(3.3)

For every 7], 7] > .fo, there exists t = t(t'o, 7]) such that for all .f ~ 7]

strict inequality holds- in (3.3). This implies-that II", vanishes on the set
[to]
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{[fllf ~ ~. Since this is true for every"l > fo, V'f[llIi is supported by the
set {[fol}' i.e., 4'[~IIJ is an extreme point of So and hence cP[~oJ generate an
extreme ray of S~ I -

Combining (2.D, (2.2), and 0.2), we have:

3.3. THEOREM. Let {Uj}~~o be defined by (1.1)-0.3) and let {cP[~ll{ E 2}
be defined by (2.10) and 0.1), then aery fEB n CA admits the representa­
tion

oc

f = L aiu; + JcP[~l d/-LA[{j),
i~O

(3.4 )

for some nonnegative measure /-L j'
Moreover, in case that the family {cPt1cf E 2} has property (*), then 0.4)

is an extreme ray representation off. "-

In the following theorems we consider the extreme ray structure of the
cone S in a special case of SGAM functions.

3.4. THEOREM. Let {u)7~o and {cP[~JI{ E 2} be defined as above and
assume that (1.6') does not hold. A necessary and sufficient conditions that
lim { = a for all { E 2 with cPf. *- 0 is that for all t and x, b > t > x > a,

cPA t) = cP( t, x) = o. (3.5)

Proof Let cf E 2. Assume that lim cf = z > a. Let a < x < z. Then
cPr ~ cPt and the sufficiency of 0.5) follows. Let! = {x, x, x, ... }. Since
! E 2, ~and cPr = limn_H",(cPn('; x)/cPn(b; x» = cPr' 0.5) is necessary as
well. I -

3.5. THEOREM. Let {u)~~o and {cP[~Jlf E 2} be defined as abol'e and
assume that 0.6') does not hold. For i ;" 0,1, ... , let

O<mj(x,y) =min{wj(t)/x ~ t ~y} ~max{wi(t)lx ~ t ~y} =Mi(x,y).

If for every c, a < c < b there exists an E = E(c), E > 0, such that

;~'" [TIl (M;( c, b)/mi( c, b)) ]E n
= 0,

then lim f = a for every f with cP~ *- O.

Proof Applying Theorem 8.1 of [2, p. 4321 to the convexity cone

(3.6)

C_i(c,b) n (,r]oC(cPo(·;C)'[C,b],cP
'
(';C)'[C,b], ... ,cPn(·;C)'[C,b])l,
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where C -I(c' b) is the cone of nonnegative functions on (C, b), one sees
that <3.5) holds with x = c (see [1]), hence it holds for all x ~ c. Since this
is true for all c > a, 0.5) is satisfied. Theorem 3.4 implies that lim t = a
for every ~ E :2 for which cP~ * O. I -

4. EXAMPLE

We now show that there exists a (nontrivial) cone of SGAM functions
such that the set {cPt lt E S} has property (*).

We start with the-following:
Let wa = 1 and wn(t) = lit, 0 < t :::; 1, n ~ 1. One can show that

t < x,
t ~ x,

and for n ~ 1

- {O,
<pn(t;x) = (1In!)(logt -Iogx)",

Since

t < x,
t ~ x.

~n(t;x) = (1 _ logt )n,
~nCl; x) log x

it follows that

for 0 < x :::; t :::; 1,

Let

. ~n(t;x)
hm _ = 0,
n.... oo<Pn(I;x)

for all 0 :::; t :::; 1 and 0 < x < 1.

l: = {t:}"" = {e-(n/s)}oo_
~ ~n n=O n-O' s> 0, (4.1 )

~n(t;tn) -
lim _ =<pt(t)=t s.
n.... oo cPn(l;tn) -

We now show that

( 4.2)

{~[~JI~ = {e-(n/s)}:_o, s > O} = {~[~ll~ E 2}
For every s > 0, let Is be defined by I/O = t S

• For every pair (x, y) in
the open unit square there exists a number s such that fs(x) = y. Assume
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that there exists a function I $. {f,15 > O} generating an extreme ray in the
cone S. There exist two numbers 51 * 52 and two points f l , f 2 E (0,1) such
that f,rfj) = IU j ) and I,P2) = f(t). It follows from Lemma 2.15 that f
agrees with f" on [f l , 1) and with f'2 on [f 2 , 1), i.e., I" = 1'2'

Note that although {W,X~II are not C' [0, I)-functions, Lemma 2.15 is
still applicable. We now perturb the functions, {w,,}, i = 1,2, ... to obtain
the desired example.

For n = 0, 1,2, ... let flll be C10, 1] functions satisfying

{

0,
flll(f) = I,

O~f~EIl+I'

Ell ~ f < 1,

and 0 < flll(t) < 1 and increasing for EIl + 1 < f < E", where Ell = e-/l2.
Define Wo = Wo and for n > I set

Wn ( f) = 1 + (w" ( f) - 1) fl /I ( f) , 0< f ~ I,

and wnW) = 1.
Clearly w" are positive C10,1] functions, w,,(t) = w,,(t) for E" ~ f ~ 1

and w,,(t) ~ w/t) for 0 ~ f < En' Also, it is easy to show that (w,,/w,,)' ~ O.
For every 5 > 0 let t = t(s) be a subsequence of (4.1) such that

t -lim(<pn(·;t,,)/<pn(1;t;')) exists, and denote the limit by <Pt. Also,
~ - lim(Lk<P,,(-; t,,)/<p/ I; t,,)) = Lk<P{. C

- For every 5 there exists k(5) such that for k > k(s), tk > Ek. This
implies that for k > k( s)

Lk<p,,('; t,,)

<p,,(I;t,,)

Lk 4>Il('; t,,)
<p,,( 1; t,,)

L k4>n( .; t/l) 4>n( 1; t,,)

4>n( 1; t,,) <p,,( 1; t,,) ,
(4.3)

where L k and Lk are the operators defined in Section 1 with respect to
{w)~~o and (W)~~II'

Since t - lim(Lk<P,,('; t,,)/<pn(1; t,,) and t - lim(Lk4>,,('; t,,)/
4>,,(1; t,,)f exist and the latter is positi;e on (0, 1), t­
Iim(4)n(1; t,,)/<p,,(I; t,,» exists and is positive. Moreover it is ~ I,-i.e.,
there exists a constant a(t) ~ 1 such that Lk<Pt = a(t)Lk4>c

Next we show that 4>,,(1; . )/<p,,(1; . ) is nonincreasing. The
c

claim is clear
for n = O. Assume that it is true for n - 1. By differentiating, we get

~(4),,(I;X)) = w,,(x)<p,,_I(I;x) (4),,(I,X) _ W,,(X)4>/I_I(I;X)).
dx <p,,(1;x) <P,,(1, x) <pn(I,x) wn(x)<p,,_JI;x)

(4.4 )
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The right-hand side of (4.4) is nonpositive since

221

4>,,0; x)

4>,,0; x)

~,,(I;x) - ~,,(I; I)

4>,,0; x) - 4>,,0; I)

W,,(X)4>,,_I(\; x)

w,,(X)4>"_l(\; x)

(4.5)

The second equality follows from (1.3) and the mean value theorem (for
some y, x < Y < 1). The inequality follows from the monotonicity of
w,,Iw,, and from the induction assumption.

Combining (4.4) and (4.5), one concludes that ¢,,{l;' >14>,,(1; .) IS

nonincreasing.
If lim ~ > 0 then (4.3) is applicable and since ¢,,(l;' )/4>,,(1; . ) IS

nonincreasing ~ - lim sup ¢,,(1; ~,,)/4>,,(I; ~,,) is finite and positive. Since
for such ~, ¢< ~ 0 it follows that 4>< = o.

Finally: let ~1] < ~ with lim { = O.~ By L'HospitaI's rule one has
- -

a(O
lim

a( 1]) 1--->0+

Lk¢t;( t)

Lk¢'l(t)

a(~) . ¢<(t)
= -- hm ~~-

a(1]) 1--->0+ ¢'l(t) ,

for large k.
Since {¢~I~ E S} has property (*), so does {4>~I~ E S}.
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