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Bounded generalized absolutely monotone functions which are not equal to
their Taylor-type series are considered. This family of functions constitutes a
convex cone in a generalized C*(a, b) space. The guestion of extreme rays of this
cone as well as the extreme ray representation of its elements is discussed. « 1994
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1. INTRODUCTION

We start by recalling some definitions and results to be used in the
sequel. Let {u )", be an infinite sequence of functions belonging to
C*[a, b], such that for all n, n =0,1,2,..., {4}, forms an Extended
Tchebycheff System on [a, b]. With no loss of generality we may assume
that

u(t)y =@¢i(t;a), i=01,2,..., (1.1)
where
0, a<t<yx,
do(t3x) = {Wo(t)» x<t<b (12)
0, a<t<x,

S0 =) Mu(ere, (neyde), xsi<b, (1)

i=1,2,3,...,
and where {w,J7_, is a sequence of positive C*[a, b] functions.

1.1. Derinition. A function f defined on (a, b) is said to be convex
with respect to the Tchebycheff system {u}, if for every set of n + 2
points, a <t, <t < -+ <t,,, <b, the following determinantal
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inequality holds:

ug(te) uo(t) - wuelt,)  ue(t,.y)

u(to) w(ey) - wy(s) wlt,)
(”"’”" St )= : : . : : > 0.
ol bl G ) ) ()

fleo)  f() - f(e) J(t i)

The set of convex functions with respect to the Tchebycheff system
{u )", forms a convex cone denoted by C(u,, uy,...,u,)or C, in case no
ambiguity arises. Also, we let C_, denote the cone of nonnegative func-
tions on (a, b). Note that ¢,(-; x), for k > n, is in C, (see [2, Coro. 3.2,
p. 395)).

It is shown in [2] that fe C, = N} __,C, if and only if

(L)) =f(1) =0

and
(L.fY()=(D,D,_, - Dyf)(t) =0, a<t<b,n=0,12,...
where (D, f)(t) = (d/det X f(£)/w, (1))

The elements of the cone C, are called generalized absolutely mono-
tone (GAM) functions.

Also, if fe C, then the following Taylor-type formulae hold (see
[2, Remark 3.1, p. 395]):

b . (Lo f)(at)
f1) = [oalt ) (Luf) (o) de + T —==0mu(0), ()

a<t<b, n=0,1,2,....

Formulae (1.4) give extreme ray representations for the elements of
nr._C.

As shown in [1], a necessary and sufficient condition for all functions
f € C, to admit the Taylor-type representation

f(e) = Yoaul(r), (1.5)

i=0
where

_ (L;_1f)(a+)

s 1 =0,1,2,...,
w.(a) ‘

i
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is that for every ¢, a <t < b, there exists a number s, t < s < b, such that
limu,(t)/u,(s) =0. (1.6)
{— o

Moreover if we restrict ourselves to the cone B N C,, where B denotes
the set of bounded functions on (a, b) then (1.6) could be replaced by

lim u,(¢) /u,(b) = 0. (1.6')

Formula (1.5) is an extreme ray representation for f € C,. In this paper
we generalize the representation (1.5) for B N C ,-functions in case (1.6")
does not hold.

We conclude this section with:

1.2. LEMMA. Letm >n > 0 and a <y < x < b be fixed. The equation
(int)

bdnlt3y)  du(t3x)
bn(b;y)  S.(b5x)

(1.7)

has at most one root in the interval (y, b). Moreover, if it has a root in this
interval, then the left-hand side of (1.7) changes sign at this root.

Proof. Assume to the contrary that (1.7) has more than one root. Let
t, <'t, be two roots of (1.7) in (y, b). Clearly, ¢, and ¢, belong to (x, b).
Define

f=0,039)/¢.(b;y) — &,(-:x)/d,(b; x).
Assume first that n = 1,
f1(x,b) € Cugl[ 2, b), u,][ 2, b)), (18)

where glJ denotes the restriction of g to the set J. Since f vanishes at the
points t,, t, and b, f agrees with a “polynomial” ayu, + a,u, on [¢,, b]
(see [4, Lemma 1]). This is impossible by the definition of ¢,,(-; x) and
since m > 1.

Suppose f has a single zero, ¢, in (y, b) and that f does not change
sign at this point. If y < x then f(x) > 0, and, since f doesn’t change
sign, it is strictly positive in (¢, ). In this case,

U( u°’u"f) <0 (1.9)

to, 1, b —

for all r e (s, b), in contradiction to (1.8). If y =x then, since
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{o(t; v)/d,(b; y_, is a nonincreasing sequence for all fixed ¢ and y (see
(1, Lemma)), f < 0. It follows that

Uy, Uy,
U( oo f) <0, (1.10)

Lty b

for every ¢, € (x, t,) and ¢, € (1, b). Inequality (1.10) contradicts (1.8).
Let n > 1. Since f(y) =0, f has at least four zeros in [y, b]. Hence
L,f has at least three zeros in the interval (y, b) (actually in (x, b)). The
claim follows by induction since f(y)=L,f(y)=L f(y)= - =
L,_,f(y) =0, and at each stage L, f has at least three zeros in (x, b).
The proof that f cannot vanish at a single point of (y, b), without
changing sign at that point, follows in the same lines. ||

In what follows we assume, for the sake of simplicity, that w, =1
(which implies that the elements of C,, are nondecreasing in (a, b)).

2. THE ConE oOF SingULAR GAM FuncTions

2.1. DeriNiTION. A function f which (i) belongs to C, (or BN C,)
and (i) satisfies ((L,f)/w,, Xa+) =0 for i = ~1,0,1,..., is called a
singular generalized absolutely monotone (SGAM) function.

2.2. CoroLLARY. Assuming that (1.6) (resp. (1.6")) holds, then the only
singular function in C, (resp. B N C,) is the zero function.

In [7], Ziegler raises the question of the extreme ray structure of C, in
case (1.6) does not hold. In [3], we gave an example of an infinite sequence
defined by (1.1)-(1.3) for which (1.6') does not hold. In this note we
discuss the extreme ray structure of the cone B N C, in case that (1.6')
does not necessarily hold, and find an extreme ray representation for its
elements when certain conditions are satisfied.

Since every GAM function has a unique representation

f=f| +f()’ (2-1)

where

g Lanen)

i=0 w;(a)

(2.2)

{

and f, an SGAM function, it is sufficient to discuss the extreme ray
representation of SGAM functions.
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The set of the SGAM functions is a convex cone with vertex at the
origin. This cone will be denoted by S. The cone S, as well as C,,
are subsets of the generalized C™(a, b) space V, i.e., the linear space of the
functions for which the differential operators L, i= —1,0,1,... are
defined, with the topology determined by the family of seminorms,

IfIi = sup{| L, f(t)|lt € I, p <n, (2.3)

where I, =[a + (1/k),b - (/K k>2/(b—a)and n = —1,0,1,....
With this topology, V' is a complete metrizable locally convex space.
Moreover, it is also a Montel space, i.e., every bounded set is relatively
compact (see [1]). In particular, the set {f € C|lim, _,, f(¢) < 1} is closed
and bounded, hence compact {1].

2.3. Lemma. The limie ¢(t; x) = lim, _, &,(¢; x) /¢, (b; x) exists for
every t € [a, b) and x € [a, b). Moreover, it has the following properties:
(1) forevery x, p, = ¢(-; x) € 8, (i) for every t, &' = ¢(t; - ) is nonincreas-
ing, and (iil) ¢' is left-continuous.

Proof. The functions ¢é,(t; )/, (b; ), n=0,1,2,..., are continu-
ous and nonnegative. Moreover, they are nonincreasing [2, Lemma 9.2,
p. 437]. This, together with the fact that {¢ (¢;x)/d (b;x)_, is a
nonincreasing sequence for every fixed ¢ and x (see [1, Lemma]), implies
the existence of the limit as well as (ii) and (iii).

Since (¢,(;x)/b,(b;x) € C,, for all n>m and 0 < (¢, ;x)/
é,(b;x)) <1 and since C,, is closed under pointwise convergence, it
follows that ¢, € B n C,,. Since for x > a and for all n, ¢,(-; x) vanishes
on [a, x], so does ¢,. This implies that ¢, is singular. For the case x = a,

see [1]. ]

For t €[a,b] and x € [a,b), define ¢, (t;x) = (¢,(t; x)/d,(b; x)).
Since ¢,(¢; - ) is nonincreasing and bounded one can define ¢,(¢; b) =
lim, _ , ¢,(t; x). Applying L’'Hospital’s rule one sees that ,(¢; b) = 0 for
a <t<b and hence lim,_, ¥ (t;b) = 0, however, ,(b;b) = 1. The
functions ,(¢; - ) are continuous on [a, b].

2.4. CoroLLARY. For every t € (a,b), the closed set supp(¢(t; - ) is
either empty (in case that (1.6) holds, these sets are empty for all t) or a
closed interval la, a,), for some a, > a.

2.5. Lemma. Let f be a bounded SGAM function. Then

(1) = [Pt x) day(x), (2.4)
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where
a,(x) = [ B,(bE)(L,f)(£) dE. (2.5)

Proof.  The proof follows from (1.4) and the fact that f is singular.
Moreover, «,, is continuous and nondecreasing on [a, b]. |1

e

We use the following notation: Let {x,};_, bec a sequence and let
M = {n} |, be a subsequence of integers. Then M — lim x, denotes
lim X

Jorx gt

2.6. Lemma.  Let f €8 and let the functions a, be defined by (2.5).
Then there exists a function « and a sequence M{a) = {71]};‘7, such that

a(x) =M(a) - lima,(x)
exists for every x.

Proof.  For every n, a, is a positive nondecreasing function and «,(x)
is bounded by f(b — ). The claim follows by Theorem 16.2 of [6, p. 27].
i

2.7. Derinimion.  Let the function @ be nondecreasing (nonincreasing)
in I =[a,b). A point x € [ is a point of invariability of a if « is constant
in some neighborhood of x. All the other points are called points of
increase (resp. decrease) (see [6, p. 6]).

2.8. DeFiniTiON.  Let f be an clement of a cone C whose vertex is at
the origin. We say that f generates an extreme ray in C if p = {rflr > 0}
is an extreme subset of C. In this case p is called an extreme ray of C.

2.9. THEOREM. Let f be a nonzero SGAM function and let «,, and « be
defined as in Lemmas 2.5 and 2.6. If a has more than one point of increase
then f does not generate an extreme ray of §.

Proof. Since f is not identically equal to zero, we may assume that
f(b =) = 1. Since ¢,(b; x) =1 for every x, (2.4) implies that «,([a, b))
and a([a, b)) are both equal to 1, where a, (/) = [, da, and a,(J) =
[, da, for every measurable set J. Define the set

A={xl¢(t;x) >0, forsomet € (a,b)} = {xld(b - ;x) >0},

and let s = sup A. Clearly, ¢ <s < b. Note that A4 is an interval ({a, s) or
[a, s]), since for each ¢, ¢(¢; x) is a nonincreasing function of x. First we
show that « does not have points of increase in (s, b). If s = b then there
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is nothing to prove. Assume that a <s < b, For every t € [a, b),
b 5 b
f(1) = [ (t5x) da(x) = [0 %) day(x) + [T0,(t5x) da,(x),

for all s,, s <s, <b. Since for x > s, lim,,_,, ¢,(t; x) = 0, and for every
n the function ¢,(¢; x) decreases in x, then for every ¢ > 0 there exists
n(e) such that for all n > n(e),

() < [0 x) day(x) + e (2.6)

Letting t = b — , we have, | = f(b — ) < a,(la,s,]) + &. Letting n — x,
we get 1 < al[a, 5,]) + ¢. Since this holds for all £ and all 5,, s <s, <b,
we have a(la, s]) = 1. If s isnot in A then ¢, (z, x) = 0 for all x > 5. This,
together with the monotonicity and the continuity of ¢, (¢, x) in x, implies
that (2.6) holds with some s, =sf{e), a <s, <s and for all large n.
Similar argument leads to the conclusion that a([a, s)) = 1. In any case,
a(A) = 1. In particular, « does not have points of increase in (s, b].
Moreover, if s is not in 4 and is a point of increase of a then every
neighborhood of s contains infinitely many points of increase of a.

Suppose « has at least two points of increase. Let ¢ lie between two
points of increase. Set

a,(x), a<x<c,

Bu(x) = {a,,(c), c<x<bh,

_ 0, a<x<c,
%5 = ay(x) ~ a(c), c<x<b.

Now define the functions g, and &, by
b
g.(1) = [ 6,15 %) dB,(x),
and
b
ha(t) = [(0a(85 %) dy, (%),

Since g, + h,=fand f€ Nn__,C,
g h, € N)__,C

i=—1%r

8. < f(b—),
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and
h, <f(b—).

As in Lemma 2.6, there exist two subsequences M(g) and M(4) such
that

M(g) = —limg, (1) =g(1)
and

M(h) — lim h,(t) = h(1).

We may assume that M(a) = M(g) = M(h). Clearly g,h € S and f =
g + h. It is readily seen that £ = 0 on [a, c] while f, hence g, does not
vanish on this interval. Also, since for some ¢ € (a, b), ¢(t; - ) is positive
in an interval entirely to the right of ¢ and containing a point of increase
of a, h # 0 on (a, b). Thus g and # do not belong to the same ray of S, so
f does not generate an extreme ray of S. |

In what follows we study the structure of ¢(¢; x) and give a representa-
tion of f by means of a certain set containing {¢, la < x < b}). Assume
first that ¢' is continuous for some ¢. In this case, Dini’s Theorem implies
that the convergence of ,(¢; x) to ¢'(x) is uniform in x. Letting n go to
infinity, (2.4) implies

f1) = fa%'(x)da(x) - fab@(r)da(x)-

We now discuss the discontinuities of the functions {¢‘}. If for some ¢,
¢ (x) # ¢'(x +) =1lim,_ . ¢'(y)then ¢, # ¢,,, where ¢, is defined
by ¢,.(s) =¢°(x +), a <s <b. We show that the discontinuities of
¢(¢;x) occur along segments.

2.10. Lemma. Let ¢ (¢) # ¢,.(2) for some t. If s <t and ¢ (s) >0
then ¢ (s) + ¢, (s).

Proof. For every ¢, set X' ={x|¢ (1) # ¢, . (¢)). We show that if
x € X' for some ¢t then x € X° for every s <t as long as ¢ (s) > 0. By
[2, Lemma 9.2, p. 437], we have

Ga(s13 %) Du(525 %)

6u(sy) Su(s2iy)| > (2.7)

for s, <s, and x <y.



ABSOLUTELY MONOTONE FUNCTIONS 207

Dividing the rows of (2.7) by ¢,(b; x) and ¢, (b; y), respectively, we can
write it in the form

IJI"(SI;X) ‘Jln(SZ;x)

Un(51:¥)  Un(s523¥) (2.8)

for s, <s, and x <y.
Letting n go to infinity, (2.8) implies that

d(s;;x) (s x)
d(si5y) o535 ¥)

If ¢(s;; x) > 0 then &(s,; x) > 0, and

d(s53y) . d(s15y)
O(s25x)  d(s5x)

so ¢,/¢, is nondecreasing. Letting y — x + one concludes that ¢, =
¢../d, is nondecreasing. Also, ¢ (t) < 1 and equality holds iff ¢* is
continuous at x. Consequently, if ¢' has a discontinuity at x, then so does
¢° for all s <t aslong as ¢'(x) = ¢ (s) =d(s;x)#0. |

> 0.

2.11. CoroLLARY. The set X = {x|p, # ¢,.} is countable.

Proof. For every t, ¢' has at most a countable number of points of
discontinuity, i.e., X' = {x|¢'(x) # ¢'(x + )} is countable. It follows from
Lemma 2.10 that X = U{X'la <t < b} = U{X'la < r < b, r is rational,
or r = a}, hence the set X is countable. |

We now discuss the elements of the cone § for which the measure a has
exactly one point of increase. In particular, we study the extreme ray
structure of S.

Let {£ );_, be a sequence of numbers in the interval [a, b]. Since both
{¢&,5_, and {¢,(-; ) _, are bounded, there exists a subsequence of
integers, {n,;}_, for which {¢,}"_, and {y,(-; ¢, )}, converge. Note that
the convergence is in the topology defined by (2.3). In particular it is
uniform on every closed subinterval of [a, b). Letting £ = (&, }_, {n }7_)),
define

lim¢é= limé¢, , (2.9)
2 joew Y

and call I(§) = {nj}j;, the index set of 3 Define

e = 1(£) ~ lim 4, (-3 &,). (2.10)
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For the sake of simplicity we write & — lim ¢, (-;¢,) for I(£) —
lim (-5 €,). ) )

When I(£) = {n|n > n,} we write £ = {£,);_, . Clearly, ¢, belongs to
S N B. Let lim §=ux. 1t £, <x for mhmtely many values of n, n € I(§)
then ¢, > ¢, = ¢, for every y, y <x. Letting y — x, the left continuity
of ¢, (m y) implies that ¢, = ¢,. Note that if ¢' is continuous at x, and
lim £ = x, then ¢,(¢£) = ¢(r; x)—dJ

Let §and n be two such sequences with limits x and y, respectively.
We say that § <n if d’.s > ¢,. When ¢, = ¢, we say that ¢ and n are

equivalent and write & ~n. We say that £ < n if £¢<n and &»mn. In
particular, when ¢ and 7 have the same index set /, and £, < n,, holds for
infinitely many values of n € I then £ < 7.

We now show that the set = of all sequences ¢, defined above, is totally
ordered. h

2.12. LemMMa.  Let £ € E and let ¢, be defined by (2.10). There exists a
sequence £ = {&,};_, such that for every t € [a, b),

d){(t) = ]lm dj!l(t;fl,l)'
= n-—x
Proof. Forevery n € I(§) set ¢, = £,. Let n;, n;,, € I(£) and assume
that n; + 1 <n;,,. We now define &, for n; <n <n;
Case A: ¢, <&, . Set & =¢,  for every n; <n <n,, . Since

#,(t; x) is a nonincreasing function of n and x,

d]")(.' n ) Z dln( ) = l'l’"ﬁl(.;g”/ﬂ)' (211)

Case B: ¢, <¢,. Since for all x and ¢, {¢,(t; x)};_, is a nonin-
creasing sequence it follows that

Uo(3€,) <¥.(36) (2.12)

i J 1

and
Uo (36,,) <.(5E,) (2.13)

for all n; <n < n;, . By Lemma 1.2, strict inequality holds in (2.12) and
(2.13)in (¢, , b) and &, ., b), respectively.

Recall from Lemma 1. 2 that ¢, (-;¢, ) —¢,(;¢,) has at most one
root in (§,,l, b). Assume first that the equation

"b",(t;fﬂ,) = ‘I’n,ﬂ(t;gn/“) (2.14)
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has one root in (£, , b) and denote it by ¢,. By a continuity argument, one
can show that there exists &7, &, | <&, <¢, such that

wn(t(); 6:1) = ‘Jjn,(t(); gn,) = ‘ﬁnﬁ,(tn; §nl+|)'

In particular, this follows from (2.12) and (2.13). Moreover, it follows from
Lemma 12 that the functions ¢,(-;&,) = ¢,(-;,), (3¢, ) -

LS

df,,,*,(';‘fn,u) and lpnl(-;,gnj) - l/,n”l(-; §",+1) have a sign change at ¢,. This
implies that for every r € [a, b],

(15 €,) liesbetween 4, (15¢, ) and ¥, (£3€, ). (2.15)
In case that (2.14) has no roots in (5",’ b), the inequalities

U5 €n) SUn(560) <, (56,.) <Ua(56.)

4 4

hold for every n; <n < n;,,. We claim that for some ¢ € [¢

have w,,l(-;g,,,) <P ) < df,,m('; §,,M). Set

€, ] we

LIRS |

A={¢lg,  <E<g,, I =1(6),in (&, . b),
such that @, (1; &) > (/;,,M(z;g,,m)}
and
B = {g;gnw <E<E,, A =1(£),in(£,.b),
such that 4,(1;€) < ¥, (1; §n1)}.

The continuity of ,(¢; - ) implies that both 4 and B are open. Moreover,
this continuity together with (2.12) and (2.13) imply that all £ € (§

&, . +¢)belong to A4, and all £ € (¢, —¢,¢, ) belong to B, for some
pdsmve g, i.e., both 4 and B are not empty Next we show that 4 and B
are disjoint. Assume they are not. For £ € A N B there exist two points
tpty € (¢, . b) such that ¢,(t; &) < y,(1);¢,) and 4,15 &) >
o, (t5€, ). 1f t; > 1, then the equation

‘J’n([; f) = (ﬂrx“](t; fn”,)

has at least two roots in (£, ,b), and if ¢, <,, then the equation
Y13 €) = ¥, (1:€,)

has two roots in (5,,‘, b), in contradiction to Lemma 1.2.
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Since the interval (£, . £, ) is a connected set, it cannot be the union of
A and B, i.c., for every n <n<n, j+1 there exists £, € (£, £ I\ (AU
B). For such ¢

n?

0, (&) U586 <d, (€, ) (2.16)

i

Since for every ¢ € [a, b], lim;_ . ¢, (1; £,) = ¢,(t) and since for every
t€la,b] and all n;<n<n., $(6¢) is between ¢,(r;¢,) and
‘/’n,,.(’; §,,,H), (see (2.11), (2.15) and (2.16)), it follows that

(1) = lim ¢,(¢5¢)) for every ¢t €{a, b).

Moreover, the convergence is uniform on every closed subinterval of

la,b). 1

2.13. Cororrary. (a) For every €, n € £, one of the following holds:
(i) £ <m, () £ >m, or (i) € ~ 7. (b) If d(1) > ¢,(t) for some 1, then
£<n.

Proof. Let £ and 7' be defined as in Lemma 2.12. If for almost all n,
& <, (£ >m,) then, since for all n ¢,(z; x) is nonincreasing in x, we
get &, > ¢, (b, < ¢,). If this is not the case, then both relations, ¢, < 7,
and £, > 7, hold infinitely many times from which one deduces that
¢ = ¢,. This concludes the proof of part (a). Part (b) follows from part
. 1

2.14. Lemma.  The set (¢l € Z) is compact in the topology defined by

the family of seminorms (2.3). Moreover, if lim,, ¢, exists, then there
exists £ with lim £ = lim; _,_lim &, for some subsequence of integers {m J7_,

and lim,, d’,f,,, b

Proof. It is sufficient to show that {¢£|§ e F}is sequentially compact.
Let {¢>§ 2 _| be a sequence of functions with £, €5 Z. By (2.9) and (2.10),
there exist sequences

™ = ({nf."'(’yn)}x [,,J,(m)];l), m=1.2.3,...,

n i

with lim; .0, = x,,, such that lim; ¥, ,.,(:3 000n) = &, .
We may assume (takmg subsequence if necessary) that lim,, . x,, = x,.
Let m, > 2/(b — a) be an integer such that [x, —x,| <1/2 and let

n(m,) € I(n,, ) be such that

my
)
l!’n(m,) 7751'(7:::[)) - d)gml - < 1/2

nim)

(i), Inim), —x,, 1 <172 and (ii)l‘
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Suppose my,my,...,n;_ , had been chosen. Choose m;
that Ix - xol <1/2/ and let n(m)) € I(n,, ) be such that

> m;_, such

. ;P X ml
(i), |17£1'("m)) X, <1727 and (i), l//,,(,,,/)(';nf,'(",;,)l,) - d)é’"l“m‘ <1727
Clearly, lim,_ .m0, = x,. Let lim, . ¥, (s nici ) = &, (taking
subsequence if necessary.)
We now show that lim;_,, ¢, = ¢,. Given £ > 0 and two integers n, k
there exists j, with m; > max(n, k) such that for all j > Fo

n
d’n(m;)(';nf’r(n';')ﬂ) - ¢§“k < 6/2

and
’ (‘;775.'("#:),)) - d’gml Hk <e/2.
Thus for j > j,, ||d>5 ¢5||k < g, Le., lm}_,mcbf = ¢,
In particular, since for all x € [a, b) o, belongs to o {¢;1¢ € £} so does
¢, 1 o

2.15. Lemma. Let §,n € E. If ¢,(t) = ¢,(t) for some t € [a, b), then
either (bé(t) =é, (t) =0 or d>§(s) =¢, (s) for all s > t.

Proof. By Corollary 2.13 we may assume that £ < n. Obviously ¢, >
¢, Assume that ¢o5(t) # 0. Inequality (2.8), together with Lemma 2.12,
1mphes

XOREEOIN

Be(s) bo(s)| > (217)

for t <s.
Since ¢,(1) = ¢,(¢) > 0 one concludes that ¢>§(s) <, (s) This implies
that equality holds forall s>t |

We now show that this family has a mean value property, in particular,
the gap between ¢, and ¢, is filled.

2.16. PrOPOSITION.  Let ¢ < m be two sequences with limits x, and y,,
respectively. If for some t € [a, b)

b,(1) <1 < (1), (2.18)

then there exists a sequence {, £ < { < such that ¢ /(1) =r.
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Proof. By Lemma 2.12 we may extend the sequences £ and 7 to (&Y,
and {n)J7_, respectively. Assume first that x, >a and y, < b. Since
£ < 7, we have x, <y,. Let x <x,and y > y,. There exists n, such that
for all k > n,, &, > x and 7, < y.

Let & = (1/2)min(¢,(1) = r, r — &,(1)). There exists n(e) > n, such
that -

wk(t;x)zwk(t;§;)2¢§(t)—s>r, k>=n(e), (2.19)
and
Ul1:y) U (6iml) dy(1) +e<r,  kzn(e). (2.20)

The first inequality in each of the formulae (2.19) and (2.20) follows
from the monotonicity of ,(¢; - ), the second from the definitions of b,
and ¢,, and the third from the definition of &.

Let 'n > n(e). For k& > n,

a(tix) 2 (t;x) >r. (2.21)
Also,
d/n(t; y) < wn(e’)(t; y) <r. (2.22)

The first inequality in each of the formulae (2.21) and (2.22) follows
from the monotonicity of sequences ,(t; x), and #,(¢; y), the second
from (2.19) and (2.20).

Thus we conclude that

d(t;y) <r<di(t;x), n>n(e).

This together with the continuity of (¢, - ) imply that there exists ¢,
x < ¢, <y such that ¢, (s,{,) = r, ie., there exists a sequence { with
lim { =z, (taking a subsequence of {{ Je_, if necessary) such that é,
exists and db;(t) = r. Corollary 2.13 implies that £<{<n.

If x, =a or y, = b, the proof is valid with x = x, and y = y,, respec-
tively. ||

2.17. LEMMA. Let f be a bounded SGAM function and let «, and « be
defined as in Lemmas 2.5 and 2.6. If x, is the only point of increase of a
then f/f(b —) is in the closed convex hull of the functions ¢, with
lim¢ =x,. In particular, if &' is continuous at x, for every t then

f/fb =) = ¢,

Proof. The function f is not identically zero and we may assume that
f(b —) = 1. Thus, a,({a, b]) = 1 for all n.
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For every n,m = 1,2,3,... Let

a=x, <xp < ' <xp,=b (2.23)

m,m

be such that a, (I ) = 1/m, with [I), denoting the interval
[xp o Xm xe1), k=0,1,...,m — 1. Since by Lemma 2.5, f(t)=
Jhy, (¢ x)da,(x), n = 0,1,2,..., one has

m—1

Y (/myd (e x ) < f(0) < X (A/m)d (e x0 ,). (2.24)
k=1

k=0
Letting n go to infinity (taking subsequences if necessary), one gets

A (1) S (1) < B,(1), (2.25)

where

An() = L (I/m)é, (1)
e (2.26)

m—1
B, (1) = Y (1/m)¢, (1)

k=0
with x,, . = (xS OF | n(m, k), k=0,1,...,m, m=1,2,3,...
defined by (2.23). Since for every m there is a finite number of sequences
we may assume that n(m,k) =n(m), k=1,2,....m, j=1273,...,

namely,
ok = (L@l n(m))), k=01, mom =1,2.3,..

(2.27)

From (2.25) and (2.26), it follows that

0< B, (1) —A4,(1) = (1/m)($,(1) = &4(1)), (2.28)

a and b being the constant sequences {a,a,a,...}, and {b,b,b,...},
respectively.

Since for every closed interval / C[a, b), a,(I) tends to 0 if x, & I, we
have

Xy, O<k<m,
imx, o ={a, k=0 (2.29)
b, k=m.

640/79/2-4
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Now, (2.25) and (2.28) imply that lim,_ . {(1/2XA4, (1) + B,(t)} =
(o), ie.,

lim {:i: (l/m)(f))_(m‘k(t) + (1/2m) (o (1) + d),_,(t))} =f(1).

mox

From here we conclude that

m—1
lim { Y (1/m)d>5m_k(t)} = f(1),
mee k=1

and hence
m—1
”]iglw{ Y (1/(m - 1)s, ,,,k(t)} £(1). (2:30)

The convergence is uniform on every closed subinterval of [a, b). Since
{feC,lim,_, f(t) < 1} is a compact set in the generalized C™(a, b)
topology, a subsequence of {£7- (1 /(m — e, k} converges to f in this
topology, i.e., f is in the closed convex hull of the set

{¢pellim £ = x}.
In the case that ¢ is continuous at x, for all ¢, ¢, = ¢, , whence f = ¢, .
|
2.18. LemMa. Let ¢, =1.,2,....m—1 m=12... be as in

Lemma 217, and let f = M - hm{):, (1/(m - D¢, ) for some se-
quence of integers M. If f is not a positive multzple of any <;b then f does not
generate an extreme ray in S.

Proof. For every m € M set
m-—1

= X (1/(m-1)¢,, .. (2.31)
k=1

It follows from (2.23) and (2.27) that

b, Zb,, 2 "2 (2.32)

Also, each of these functions is nonnegative and bounded by 1.
We may assume that f is not identically zero, i.e., there exists 7, € (a, b)

such that f(¢)) = p > 0. There exists m, = my(t,) such that f, (¢,) >

(3/4)p for all m > m,, m € M. We may assume that m, > 1 + 4/p.
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Since each of the summands in (2.31) is nonnegative and bounded by
1/{m — 1), there exists m' = m'(m) such that

m

p/ds L (1/(m = 1))o, (t) <p/2.

2m. b
k=1
Define g, = Z’= (1/(m — 1))4)!":.&'
Setting h,,, = f,, — &, it follows that & (t,) > p/4.
Let n,, € E be such that

b,

=i, o'

> ¢, 2 d (2.33)

Ko o+ 1"

Applying (2.17) and the inequalities (2.32) and (2.33), one gets

é.,.(t) ¢,(1)
b, () ,(5)

>0,

for all k =1,2,...,m, and all t < s. From the linearity of the determi-
nant in the first column it follows that

gn(t) &, (1)
2.(s) d’;,n(s) =0 (2.34)
for all ¢ <s.
Similarly,
Pu1) A1) >0 (2.35)
B0 (5) Huls)
for all ¢ <.

Letting m — o (taking subsequences if necessary) and applying Lemma
2.14, one sees that the functions g,,, &,, and ¢, converge, in the topology
defined by (2.3), to g, h, and ¢, respectively. The inequalities (2.34) and
(2.35) imply B

g(t)  d,(1) -0 (2.36)
g(s)  y(9)

and
Palt) O >0 (2.37)
$o(s)  A(s)

for all ¢t <s.
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Clearly
f=g+h (2.38)

and g and h # 0. Next we show that d),, * 0.
It follows from (2.32) and (2.33) that for every m,

b0, > by, 2 L (1/(m=m))é,

k=m'+1

= X (/(m=1))e, = hy,.

k=m'+1

Letting m go to », one concludes that ¢,(r,) = h(t,)) > p/4 > 0.

We now show that g and A do not belong to the same ray of §. Assume
to the contrary that they do belong to the same ray. In this case equality
holds in both (2.36) and (2.37) for all ¢ and s, ¢ < 5. This implies that both
g and h are positive multiples of ¢,. From (2.38) it follows that f is a
positive multiple of ¢, in contradiction to the assumptions of the lemma.

3. THE EXTREME RAY REPRESENTATION
We now state conditions under which every ¢,, not identically zero,
generates an extreme ray of §. )

3.1. DeFiNiTioN.  Let £ and ¢, be as above and let
e = sup{t|d>_§(1) = 0}.

We say that the function ¢,, not identically equal to zero, has property (*)
if foreveryn € 5, n <§
(1)

lim — 0

t=ry bo(1)

We say that the family {¢,/( € Z, ¢,(b — ) +# 0} has property (*) if
each of its elements has property (*). =

Letting [§ 1= (‘r_; [7_7_ ~ §} denote the equivalence class of the sequence &
we put h

bie) = be- (3.1)
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3.2. THEGREM. Let the cone S and the family {¢[§]|§ e, ¢,b-)+
0} be defined as above. All extreme rays are generated by elements of this
family. If b, has property (*) then &¢,) generates an extreme ray of § N B.

Proof. The first claim follows from Lemmas 2 17 and 2.18. Let S, =
(fIfS. f(b—)=1) and let ¢, | € {dl¢ € 5, d;m(b ) # 0}. Since
S, is compact and convex, and the family {go[£]|§ eEE, d’[«ﬁl(b ) # 0},
where Pre) = d)lﬂ/d)[f](b ), contains all its extreme points, the well
known theorem of Choquet (see, e.g., [5]) implies that every f € S, admits

a representation L(f) = [LdA, for every continuous linear functional L,
where A is supported by the set of extreme points of §,. Since the set
{<pm|§ €=, dbm(b ) # 0}, contains all extreme points of S, and since
there is a one-to- -one correspondence, T: [§] — ¢(¢) between this set and
the set {[§]|§ € £, d’[&](b — ) # 0}, we have

L(f) =fL(‘P[§]) d"f([§])'

where v, = Ay e T-!. For the “point evaluation™ functionals we have the
following representation:

f(1) = f(p[g(t)dvf([g]), for every t €[a, b). (3.2)

In particular,

Prenl?) = f‘plél(t) degn“‘g])’ for every ¢ €[a, b)

Let 1 > 1, and let £; < &; then

_j; (Plfl(t) "”[Eu]([ ]) / —(ﬂéit—)—dew([g]),

<§I ‘p[f()](t) glsé‘p[él)](t)

Letting ¢ — ¢, +, property (*) implies that the integrand of the first
integral tends to mﬁmty, hence the measure », must vanish on the set

{[§]|§ < }ie., Ve is supported by the set {[§]|§ > ¢, }. Since this holds
for every &, with -§l < £q, it follows that Vet is supported by the set
{[£]1€ = &}. 1t follows from (2.17) (letting s — b — ) that

Prea(?) = (1) (3.3)

For every n, n > £, there exists ¢ = t(gn, 1_7) such that for all £ > ¢
strict inequality holds in (3.3). This implies that Vere vanishes on the set
£0)
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{[gll¢ = n). Since this is true for every n > §&,, v, is supported by the

Flgal
set {[§.,]} ie., Pre,) is an extreme point of S, and hence qb[f ; generate an

extreme ray of S. ||
Combining (2.1), (2.2), and (3.2), we have:

3.3. Tueorem. Let {u}7_, be defined by (1.1)-(1.3) and let {¢(; ¢ € Z}
be defined by (2.10) and (3.1), then every f € B N C, admits the representa-
tion

f= Zaiui + f¢[§]dﬂj'([§])a (3.4)
i=0

for some nonnegative measure .
Moreoter, in case that the family {(bélf € Z} has property (*), then (3.4)
is an extreme ray representation of f.

In the following theorems we consider the extreme ray structure of the
cone S in a special case of SGAM functions.

3.4. Tueorem. Let {u}_, and (¢ ||é € Z} be defined as above and
assume that (1.6') does not hold. A necessary and sufficient conditions that
lim & = a for all £ € = with ¢, # 0 is that for all t and x, b >t > x > a,

$.(1) = d(1,x) = 0. (3.5)

Proof. Let £ € . Assume that lim § =2 > a. Let @ <x <z. Then
¢, = ¢, and the sufficiency of (3.5) follows. Let x = {x, x, x,...}. Since
x€ Z, and ¢, = lim, ,(6,(-;x)/b,(b;x)) = ¢, (3.5 is necessary as
well. ]

3.5. THeorem. Let {u)_, and {d,)|é € E} be defined as above and
assume that (1.6") does not hold. For i = 0,1,..., let

0<m(x,y) =min{w(0)lx <t <y} <max{w,(1)lx <t <y} =M;(x,y).

If for every ¢, a < ¢ < b there exists an € = (c), € > 0, such that

h_rp [U(M(c b)/m(c,b))|e (3.6)

then lim & = a for every & with ¢, # 0.
Proof. Applying Theorem 8.1 of [2, p. 432] to the convexity cone

N C(bo(:0)|lc. b, d(50)l[e,b],....d,(-¢)|[c, b])|.

n=40

C_(c,b)y 0
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where C_,(c, b) is the cone of nonnegative functions on (¢, b), one sees
that (3.5) holds with x = ¢ (see [1]), hence it holds for all x > c. Since this
is true for all ¢ > a, (3.5) is satisfied. Theorem 3.4 implies that lim ¢ = a
for every £ € & for which ¢, # 0. || -

4. ExAMPLE

We now show that there exists a (nontrivial) cone of SGAM functions
such that the set {¢,|¢ € Z} has property (*).

We start with the following:

Let wy=1and w, (1) = 1/1,0 <t < 1, n > 1. One can show that

- 0, t<x,
bo(t; ) = {1 t>x

and forn > 1

- _ 0, t <x,
nl 13 %) = (1/n!)(logt — log x)", t=>x.

Since
b (t;x logt\”
ii'L—l=(l— g ) for0<x <t <1,
b.(1; x) log x
it follows that
b (t;x
limi—"E—)=0, foral0 <t <land0<x < 1.
n—x=¢,(1; x)
Let
£={&dn0={e e, 5>0, (4.1)
ba(13 €,)

lim — =,(t) =1°. 4.2
"En“¢,,(1;§,,) ¢ (1) (4.2)

We now show that
{$[§]!§ = {e_(n/S)}:=ﬂ, s> 0} = {d;[ﬁll‘ic [ E}

For every s > 0, let f, be defined by f(#) = t*. For every pair (x, y) in
the open unit square there exists a number s such that f(x) = y. Assume
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that there exists a function f & {f,[s > 0} generating an extreme ray in the
cone §. There exist two numbers s, # s, and two points ¢, ¢, € (0, 1) such
that f.(¢,) = f(¢;) and f,(¢,) = f(1,). It follows from Lemma 2.15 that f
agrees w1th f,onle, 1) and with fi,onle,, D ie, f, =f,.

Note that dlthough {w,J:_, are not C*[0, 1]- functions, Lemma 2.15 is
still applicable. We now perturb the functions, {#,}, i = 1,2,... to obtain
the desired example.

For n =0,1,2,... let 2, be C*0, 1] functions satisfying

0, O0<r<e,,,,
1, ¢, <t<1,

n

2,(1) =

2
—n

and 0 < £2,(r) < 1 and increasing for ¢, , <t <¢
Define w, = w,, and for n > 1 set

where ¢, = ¢

ne

w,(1) =1+ (w,(1) = 1)02,(¢t), O0<r<i,

and w,(0) =

Clearly w, are positive C*{0, 1] functions, w,(t) = w,(¢) for e, <t < 1
and w,(1) < w (1) for0 <t < g,. Also, it is easy to show that (w, /w,)’ > 0.

For every s > 0 let £ = E(s) be a subsequence of (4.1) such that
£ —lim(g,(-;€)/0,(1; €, exists, and denote the limit by b;. Also,
& — lim(L, d),,( £/0.(1, €)= Lo,

For every s there exists k(s) sucfl that for k > k(s), &, > ¢,. This
implies that for & > k(s)

Lida(36) _ Lidu(36) _ Lidu(73€) du(154,)
Su(i6)  bLE)  $(15E,) G(13E)

(4.3)

where L, and L, are the operators defined in Section 1 with respect to
wl.y and (W}, .

Since & — lim(L,¢,(-; &)/¢,(1; ¢, and & — lim(L,¢,(; ¢,/
é,(1; £,)) exist and the latter is positive on (0, 1], & -
lim(¢,(1; £,)/¢,(1; £,)) exists and is positive. Moreover it is > 1, ie.,
there exists a constant a(£) > 1 such that L, ¢w£ = a(§)L d>£

Next we show that ¢,(1; - )/é,(1; - ) is nonincreasing. The claim is clear
for n = 0. Assume that it is true for n — 1. By differentiating, we get

d [6,(1;x) _ (D), (1x) (1 x) W (1), (15 x)
d)n(l;x) d)n(]’x) ¢"(1,X) W,,(X)¢,171(1;x)
(4.4)
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The right-hand side of (4.4) is nonpositive since

é,(1; x) _ é,(1;x) — $,(1;1) _ w,(¥)b,_(1;y) B w,(x)d, (15 x)
o (l;x) b, (1;x) = (1:1) w3, (1:y) ~ wilx)d,(1;x)
(4.5)

The second equality follows from (1.3) and the mean value theorem (for
some y, x <y < 1). The inequality follows from the monotonicity of
w,/w, and from the induction assumption.

Combining (4.4) and (4.5), one concludes that & (1;- )/, (1;-) is
nonincreasing.

If lim ¢ >0 then (4.3) is applicable and since d& ;- )/ (1;- ) is
nonincreasing ¢ — lim sup ¢,(1; £,)/é,(1; £,) is finite and positive. Since
for such ¢, (155 0 it follows that ¢, = 0.

Finally, let” n<¢ with lim ¢&= 0. By L’'Hospital’s rule one has

lim de(1) i Ly (1)
=0+ (t) r—’r(lll+ quS,l(t)
ag) . Ld() _alg) | a(0)

= 27 _ = =
a(m) =0 Togo()  a(m) =0s (1)

for large k.
Since {$,{ € Z} has property (*), so does {(,bélg e 5}
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